(5(x^2-7))/(x^2+7)^2=0

Simple and best practice solution for (5(x^2-7))/(x^2+7)^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5(x^2-7))/(x^2+7)^2=0 equation:



(5(x^2-7))/(x^2+7)^2=0
Domain of the equation: (x^2+7)^2!=0
x∈R
We multiply all the terms by the denominator
(5(x^2-7))=0
We calculate terms in parentheses: +(5(x^2-7)), so:
5(x^2-7)
We multiply parentheses
5x^2-35
Back to the equation:
+(5x^2-35)
We get rid of parentheses
5x^2-35=0
a = 5; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·5·(-35)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{7}}{2*5}=\frac{0-10\sqrt{7}}{10} =-\frac{10\sqrt{7}}{10} =-\sqrt{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{7}}{2*5}=\frac{0+10\sqrt{7}}{10} =\frac{10\sqrt{7}}{10} =\sqrt{7} $

See similar equations:

| 4x7^3=241 | | 5x=+6 | | 3^x=135 | | y+9=-1/5 | | 1/7b+3=13 | | 3.4y-5.2=2y+2 | | -26=-5(4d+7) | | 3.4y-5.2=2y-3 | | 5-x-11=4x-22 | | x^2-46x=-60 | | 9a-14=7a+20 | | x^2-46x+60=0 | | -2b+4b=10 | | 2x^2+3x+10=2(2x+16) | | 2+5x=7–3x | | 5x+15=x+340 | | 2^(-6x)=6 | | 2b+4b=10 | | 5(4x-2)=2(9x+3) | | 8x–2(4x)=48 | | 5(4x-2)=2(9x+3 | | -9k+6+8=-23 | | (X+7)=(3x-5) | | b/2+5=16 | | 2(x–3)+7=4(x+1)–2 | | (5-19x)=(3-7x) | | 2q+7=7 | | 7(w+2)=14 | | X5+2x=0 | | 6/5y+8=4/5y-10 | | 7x+15-5x10=-17-13x | | 9v+17=57 |

Equations solver categories